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L’ This report provides results of the investigation and application of the Alopex

Algorithm to optimization problems. The Alopex Algorithm is a stochastic
multiparameter optimization procedure. This algorithm addresses the two
optimization problems of resource allocation and pattern recognition.
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INTRODUCTION

~{The assigned tasks consist of two parts: (1) Recognition of 3-D objects given a

2-D projection. (2) Optimal resource allocation. Both assignments involved appli-

cation of the optimization algorithm Alopex which was developed by the principal

investigators.

Our investigation on these assignments are described in section I and II. We

investigated 3-D objects with a view toward identification of airplanes. A system

capable of rapid identification of airplanes can be built based on our findings. For

the second assignment we investigated the problem of assigning in an optimal way

a number of guns to targets. Alopex has been found to converge rapidly to optimal

assignments. We also compared the performance of the Alopex algorithm with

the widely used method of simulated annealing. Alopex was found to converge

-
considerably faster in all examples tried. !
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I. 3-D PATTERN RECOGNITION

1. Introduction

The identification of three-dimensional objects from their two-dimensional im-
ages suffers many difficulties. In addition to the loss of one dimension, magnification
and orientation of the imaged object are usually unknown. The method of identi-

fying three-dimensional objects has been investigated by a number of researchers.

In order to retain the translation, rotation, size and shape information, Dudani
et all®l calculated up to fourteen moments as features to represent the image, while
Wallace et all°] used a complex representation of the boundary curves to obtain
Fourier coefficients as the set of descriptors. In both reports, libraries containing

the representations of candidate objects had to be constructed.

Chien et all®l proposéd a method which needs multiple views of the object,
represented by structures called quadtrees and octrees. Banhu,!?! Wangl?!l and

Ben-Ariel3|41(8! yged other sets of features to match pictures with objects.

In our method the input pattern (picture) is represented by a two-dimensional
matrix whose elements (zeroes and ones) are pixels. The description of the three-
dimensional objects (templates) consists of three-dimensional arrays of zeroer and
ones specifying the boundaries. Comparisons are made between picture ard tem-
plates by forming orthogonal projections of the templates using different Euler an-
gles. Our method, unlike the others, requires less storage to des ribe the objects
but defines a dynamic process by which the simple stored template information is

transformed to match the picture.




3. Meihod

In our studies a picture (2-D input) is identified with one of a set of known
objects (templates). Binary arrays are used, with object represented by ones and
background by zeroes. The templates are arrays of 64x64x64 elements. The pictures

are matrices of 64x64 elements.
2.1 Rotation of the Templates

Since a projection has to be obtained before comparison can be made, three
angles need to be chosen. We are using three Euler angles to represent the rotation
of three-dimensional objects. There are many choices for the three Euler angles.
For example, in a right-handed coordinate system, there are twelve sets of Euler
angles.(1®(17} For our purpose, the following set is chosen. Let the coordinate sys-
tem be Ozyz before rotation and OXY Z after rotation. Let OA be the line of
intersection between the Ozy and OXY planes. Define as §, the angle between Oz
and OZ axes, 0, that between OA and Oz and 03 the angle between OA and OX.

The ranges of these angles are:

0°<6, < 1800, 0° <8, < 360°, 0° < 03 < 360°.

The templates are rotated using these angles and projected on the Ozy plane. The
disparity between a template projection and the picture is represented by a cost

Junection, which we wish to optimize.




2.2 The Alopex Algorithm

The Alopex algorithm was proposed for solving optimization problems.(®1[19](19]

The optimizaiion procediire is stochastic and iterative, In every iteration, all vari-
ables that determine the cost function change by small increments, and the cost
function is computed. The change of a variable depends stochastically on the change
of the cost function and the change of the variable as calculated from the prior two
iterations. Two parameters control the optimization process: the probability or
stochasticity p and the step size 6. The Alopex algorithm used here is defined

below.

Let F(z,,...z,) be the cost function and z,...z, the variables to be adjusted.

The change in the 1+ — th variable at the n — th iteration is given by
) = 2l 5 (L)

where the increments 6!") are given by

P‘-(")6 with probability p
6" = (1.2)
—P™s with probability (1 — p)

+1 if ma» [1:("_” - xf"")] * [F(n—l) = F(n—z)l >0

P = ' (1.3)
—1 if ma[z7Y oMY F-) _ P <

The value of m is +1 for maxi’nization, —1 for minimization. Similar algorithms

have been employed by us successfully in many optimization problems.'!?!

3. Examples and Results

We explored several types of cost functions such as those which match bound-

aries, or areas, or a combination of both. We also used different optimization
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procedures by considering cost functions that are to be minimized or maximized.

We found that minimization of the following cost function is effective:
. . 9
F' =) "(IF-T)) (1.4)

where ; is the template number, k the particular template from which the picture is
formed, 1 is the pixel and I¥, T;i are zeroes or ones representing the input (picture)
and orthogonal projection of the template ; respectively. The input is defined by
the three Euler angles ©%,0%, 6%. The template projection is defined by the Euler
angles 0{,0%,0{, The general problem is to obtain the global minimum of F’ by
varying tke angles 0{,0{,0&.

In employing the Alopex algorithm, many different step sizes have been tried,
and it was found that they affect the speed of convergence. A é§ of about one degree
is appropriate for good convergence. If § is smaller more iterations are needed to

reach the optimum, while larger §’s produce larger fluctuations in the cost function.

The probability p plays also a very important role in the process. It is necessary
to keep p less than 1 to prevent trapping of the process in local extrema and larger
than 0.5 in order to drive the process towards optimization. A good operational

value is around 0.75.

In understanding this general problem the following classes of problems have

been investigated.

3.1 One 3-D Template

We chose a single template in the shape of the letter L. The input is an arbitrary
orthogonal projection of the template. In this study we test the convergence of the
angles 0 to © as a function of step & and probability p. We illustrate the convergence

of the process by presenting results shown in Figs. 1-3. The step size and probability
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were kept at 1° and 0.75 respectively. In these examples, which are typical of most
runs, the optimum was reached within a few hundred iterations. At the optimum,
the variables 8,,8; and 83 reached the values of the input parameters ©,,0, and

O3.

In Fig. 1 the process started with initial angles 8, = 60°, §; = 270°, and 03 =
290° while the template input angles were ©; = 110°, 6, = 230° and ©3; = 335°.
It is seen that the cost decreased to a minimum in about 200 iterations, and the
corresponding input angles were found. Notice that the initial angles differed from

the input angles by less than 45°.

In Fig. 2 the differences between input and initial angles were larger. The cost
function reached a local minimum in about 150 iterations and was trapped for a
while and then reached the global minimum. This shows that the cost function, in
order to reach the global minimum, had to overcome some local minima. If this
difference is further increased, the cost function may not reach the global minimum
with the chosen step size and probability. There are many local minima in this

three-dimensional pattern recognition cost function.

Fig. 3 shows the result of an annealing schedule, in which the step size was
reduced from 1° to 0.2° after 200 iterations, otherwise the conditions were the same

as those in Fig. 1.

3.2 Five 2-D Templates

In oraer to further investigate the problem of convergence with highly disparate
initial and input angles the simpler problem of 2-D template identification was
considered. Five templates were formed by crossing two rectangles. The templates
are similar in appearance differing only by 50 to 100 pixels (Fig. 4). In Fig. 5 the

costs, F}, for the five templates are shown as functions of iteration number. The
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input was derived from template V using an input angle © = 190°. The process

was initialized with angles 180°,150°,220°,230° and 265° for the five templates

by the largest initial cost function (red trace in Fig. 5). As seen, the cost function
for template V reached the lowest value, and thus made the correct identification.
Many simulations have been done with different input and initial conditions. We
found that the input can be recognized as long as the difference between input
and initial angles is within 90° because of a deep local minimum around input

6 =6 + 180°.

3.3 3-D Object Identification

In the above cases we studied identification from 2-D templates and tests of
convergence for a single 3-D template. Now we present simulation results of object

identification using several 3-D templates.

Two 3-D templates

Two templates are used here, which are the 2-D patterns used above (Fig. 4)
with a common thickness added as a third dimension. The parameters 6 and p
in Alopex were the same as before. The rotation variables of the template were
independent of one another. We found that correct recognition and assignment of

angles were achieved if the input and initial angles were within +45°.

Five 3-D object identification

In this study, the templates used are the five 3-D objects resembling airplanes
whose z-y projections are shown in Fig. 6. Along the z-axis different thicknesses

were used. The templates differ between 30 and 200 pixels. In the Alopex algorithm,
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we start with arbitrary Euler angles (5) defining the template projections. The
cost function used is given by equation (1.4). We have found that Alopex always
converges but not necessarily to the global minimum which defines the correct
identification. As it was found above in the case of two 3-D templates, if the initial
value of the variables were within 45°, Alopex made the correct identification. By
running Alopex a number of times and starting with random initial values for the
Euler angles, the global minimum is always found as illustrated by the following

two examples.

Ezample 1:

The two parameters used for controlling the Alopex process in Eq. (1.2) are
6 = 1 and p = 0.78. Table 1 shows the results of four optimization runs. In each run
the input is a projection of the template 2 with input angles listed. Each run consists
of six indenpendent trials in which random initial orientations are chosen for each
of the five templates. Each trial was terminated after 700 iterations. The Table
lists for each trial the lowest cost function, the winning template and the iteration
at which the minimum was reached. As seen in each run the correct template was

identified.

Ezample 2:

In this example, the same parameters é and p were used. The inputs are from
template 4 with different set of angles. Again, it can be seen in Table 2 that the
object was correctly identified.

In addition to the cost function defined by Eq. (1.4) we have investigated the
effectiveness of other cost functions such as moments, boundaries and others. Thus

far the one defined by equation (1.4) gives the best results.




From our extensive computer simulations on 3-D pattern recognition, given a

2-D projection as input, we conclude:

(a) The Alopex optimization converges to the global minimum if the initial orien-
tation of the template is within 45° of the input values.

(b) In the most general case in which the input orientation is totally unknown, the
correct identification can always be achieved by performing a small number of

trials with randomly chosen initial orientations.




II. OPTIMAL RESOURCE ALLOCATION

1. Introduction

Resource allocation is a well known NP-complete class of problems. No poly-
nomial time solution is known. However, stochastic methods have been classically
applied, some of which have given good results but with long, impractical run-
times(18) for large problems. ALOPEX being finely parallel, can achieve op.imiza-
tion, within reasonable time limits. Further substantial improvement is possible, if
the program is implemented on a parallel machine like the Connection Machine 2.
What remains to be done is to investigate methods of controlling the dynamics of

the problem.

It is the objective of this research to obtain the best set of assignments for
different facilities to perform a given set of tasks. We are given the efficiencies with
which each facility can carry out each task, and the interations, i.e., the extend to
which one task interferes with or enhances the efficiency of a facility to carry out a

different task.

To make the problem more specific, we take the facilities to be guns and the
tasks to be hitting targets. Other examples of the same formulation of the resource

assignment, problem easily come to mind, such as:
(1) Assignment of proper jobs to human resources.
~ (2) Distribution of resources to various demand locations in a cost effective way.

(3) Best use of facilities and personnel in disaster relief.
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2. Specific Formulation
Our approach uses the Alopex method of optimization, and thus explores the

parallelism inherent in the resource allocation problem.

Given a set of guns and a set of targets, we make initially random assignments.
These assignments are changed incrementally and iteratively, using the Alopex
algorithm!®! and a scalar cost function constructed from the expected success rate

for the various targets.

We consider a specific formulation of the problem as defined by the following
quantities and relations. A number of practical problem can be represented within
this formalism, and the effectiveness of the Alopex optimization can be evaluated.
We define:

€;: Effictency of gun ¢ to hit target j.

a;i: Assignment of gun 1 to fire at target ;, where

>, @ =1and 0 < a; < 1.0 (2.1)

0ijk: Mutual Enhancement coef ficient of gun ¢ to hit target j, if gun 1 is

also assigned to target k.

We assume the performance of any gun t to be limited by the normalization con-
dition given by Eq. (2.1). The resource allocation problem is, therefore, defined as
the proper adjustment of a;; which denote the assignments of guns to targets with

the aim of maximizing the probability of hits.
With our formulation, the probability of gun 1 hitting target j is:
Py =y - (& + D _(auk - 04x)) (2.2)
k

Equation (2.2) expresses our assumption that the efficiency ¢,; is enhanced (or
reduced) by an amount determined by the assignments of the gun 1 to other targets

k and the interaction coefficients o,;.
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The probability of a target j being hit is therefore:
PJ' =1- H(l - P,'j) (2.3)
We have constructed a cost function,
F=) (1-P)? (2.4)
J
which is to be minimized by varying a;.

3. Experiments and Results

In a series of computer simulations we have examined the performance of the
Alopex algorithms when applied to a variety of problems in which we have assumed
different numbers n of facilities (guns) to be assigned to the performance of m tasks
(hitting targets). Different distributions of efficiencies ¢;; and interactions o, were

assumed.

Some results of these preliminary investigations are presented. Two parameters
determine the dynamics of the optimization proces—s. These are the step size § by
which the assignments «,; are changed in each iteration, and the probability p that
enters into the Alopex algorithms!®. In the following simulation runs we present
the convergence properties of the algorithm. In the following simulation runs we

present the convergence properties of the algorithm. The a,; were initially assigned

random values between 0 and 1, subject to the normalization condition Eq. (2.1).

Ezample 1:

We assume that 2 guns are available to fire at 3 targets. The efficiencies ¢,, are
given in Table 3(a). It is seen that with our assumptions gun 1 has a high efficiency
for hitting target 2, gun 2 has reasonably high efficiencies for hitting targets 1 and

3, but is poor in hitting target 2. It is intuitively obvious that gun I should be

12




assigned mostly to target 2 and perhaps part of the time to target 3 while gun 2

should divide it’s efforts between targets 1 and 3.

In Table 3(b) we show the result of an optimization run in which the step size
was 6 = 0.015, since the a,; range from 0 to 1.0 (this is 1.5% of the dynamic range)
and the probability p in the Alopex algorithm (Eq. 1.1-1.3) was assumed to be
p = 0.75. In this run all interactions o,; were taken to be zero. We see from Table
3(b) that our intuitive expectations are confirmed by the assignments generated by

Alopex. Figure 7 shows the cost function F' as a function of iteration numbers.

Ezample 2:

In another simulation, we took 4 guns and 4 targets. Table 4(a) shows the
efficiencies of guns for each of the targets. Note that, again, the efficiencies suggest
an obvious assignment: gun 1 is best for hitting target 2, gun 2 is good only for
target 3, gun 3 for target 1 and gun 4 for target 4. When Alopex is applied to this
problem, with oy, kept at zero, as in the previous example, we obtain the expected
results reflected by the high assignments of the guns to the targets they are best in
hitting as seen in Table 4(b). Note the high probabilities of hitting the targets.

Figure 8 shows the cost function plotted against iteration numbers for this

example. A § = 0.02 and p = 0.80 was used in the Alopex algorithm.

Ezample 3:

In this example, we again took 4 guns and 4 targets, but the efficiencies were
assumed as shown in Table 5(a). The efficiencies do not suggest any obvious as-
signments, because some of the guns have equal efficiencies in hitting 2 or more
targets, and some targets can be hit equally well by 2 or more guns. When Alopex
was applied to this problem with 6 = 0.01 and p = 0.75, we get the assignments
for the best cost function in 1000 iterations as shown in Table 5(b). Figure 9 shows

the variation of cost function versus iteration number.

13




Ezample 4:

Two separate simulations were conducted with the same number of guns and
targets and also the same associated efficiencies as in Example 2 except non-zero
values for o,;x were used. In the first simulation we set the mutual enhancement
coefficients o,;x = +0.1, thus enhancing the efficiencies. This input gave higher
probabilities P;. The cost function shown in Figure 10(a) reached low values within
1000 iterations. In the second simulation we chose negative mutual enhancement
coefficients o,,) = -0.1, thus reducing the efficiencies. This reduced the probabilities
P; for all targets, compared with the run where oz = 0.0 (Ezample 2). Figure
10(b) shows the cost function versus iteration number. Note that the cost remains

high.

4. Timing Issues

Figure 11 is a plot of number of parameters a,; to be optimized (with is the
product of the number of guns and number of targets) versus the VAX-8800 (UL-
TRIX OS) cpu time per 1000 iterations. As can be seen, the cpu time is linear to

the number of parameters within the range of parameters considered.

We find,

= 1.01 * (No. of parameters) sec/1000 iterations.

As every parameter is optimized independent of others parameters in every
iteration, dependent only on the scalar value F, the computation time would be
expected to vary linearly with the square root of the number of parameters. if the
program is run on a parallel machine like the Connection Machine - 2. This. of
course, depends on how the problem is mapped. In fact a properly mapped problem
could be solved in a time that depended weakly on the number of parameters,

depending on the architecture of the machine.
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5. Comparison with Simulated Annealing

We have successfully applied the Alopex algorithm to the resource allocation
problem and good assignments have been obtained for a set of guns to hit a set
of targets. Our simulations have shown that the Alopex algorithm is applicable to

such a problem.

The other stochastic optimization algorithm is the widely used simulated
annealing!7l!!l. We will compare the performance of Alopex with simulated an-

realing for the resource allocation problem.
5.1 Simulated Annealing (SA)

This is a heuristic optimization technique. The algorithm, based on the
Metropolis!!4l method, is stochastic and iterative. In every iteration the cost func-
tion is evaluated after performing random changes in the variables. If the cost
function has improved over the preceding iteration, the changes in the variables are

xept. Otherwise the changes are accepted with a probability
p =exp(—AF/p)

where ( is an adjustable parameter, analogous to temperature in statistical me-
chanics. The process of annealing consists of devising a schedule for reducing 3 as
the iteration number increases. Customarily, § is kept constant over a number of
iteration L, called the chain length. The process is then described in terms of a

Markov chain.
5.2 Numerical Examples

In the problem of guns and targets, the same equations, (2.1)-(2.4), are used
for Alopex and SA to optimize the assignments, a,,. Identical initial conditions and

step sizes, §, are used.
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In the first example, we consider 2 guns firing at 3 targets. The enhancements
0,;k are taken to be zero and efficiencies ¢;; are those given in Table 3(a). We used
as control parameters § = 0.015, p = 0.78 in Alopex, and 6 = 0.015, L=50, 3o = 0.5
in simulated annealing. The control value 3 is decreased by 10% after each chain
length.

Figure 12(a) shows the evolution of the cost function for Alopex and 12(b)
that for SA. It can be seen that the optimal result is obtained by both methods,
but Alopex converges in about 220 iterations compared with the 2500 iterations

required in SA.

The second example treats . guns and 4 targets. The efficiencies are shown in
Table 6. Now the chain length is chosen to be L = 100. The remaining parameters
are the same as in example 1. Fig. 13(a),(b) again show the superior performance
of Alopex. Notice that no annealing has been used in the Alopex. Past experience
has shown that the Alopex performance can be improved by gradually increasing p

(Eq. 1.2) which is analogous to annealing.

6. Conclusions

The problem of the resource allocation has been investigated by applying
Alopex to a specific problem. We conclude:
(a) Alopex could be applied to practical problem of this type.

(b) The performance of Alopex was superior to SA in the examples investigated.
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Fig. 1

Fig. 3

Fig. 5

Fig. 6
Fig. 7

Fig. 8

Fig. 10

Figure Captions

Cost function versus iteration number for a 3-D template (L-shaped). In-
put angles are ©, = 110°,. 6, = 230° and ©; = 335°. Initial angles are
0, =60°, 6, = 270° and 03 = 290°. § = 1° and p = 0.75.

Cost function versus iteration number for a 3-D template (L-shaped). In-
put angles are ©; = 28.5°, 8, = 153.6° and O3 = 298.3°. Initial angles
are §; = 300°, 0, = 250° and 63 = 200°. § = 1° and p = 0.75.

Cost function versus iteration number for a 3-D template (L-shaped) with
annealing. Input angles are ©; = 110°, ©; = 230° and O3 = 335°. Initial
angles are 8, = 60°, 8, = 270° and 83 = 290°. & = 1° for first 200
iterations then 6§ = 0.2° for the rest. p = 0.75.

Five 2-D templates.

Cost functions versus iteration number for five 2-D templates. Input
is from template V with an angle & = 190°. Initial angles are 8, =
180°, 6, = 150°, 83 = 220°, 6, = 230° and #5 = 265° respectively. § = 1°
and p = 0.75. Template V is shown in red.

Five projections of 3-D templates.

Cost function versus iteration number for resource allocation with 2 guns
and 3 targets. 6 = 0.015, p = 0.75, 0;;x = 0 and ¢,; as shown in Table
3(a).

Cost function versus iteration number for resource allocation with 4 guns

and 4 targets. 6 = 0.02, p = 0.8, 0, = 0 and ¢,; as shown in Table 4(a}.

Cost function versus iteration number for resource allocation with 4 guns

and 4 targets. 6 = 0.01, p = 0.75, 0,;5x = 0 and ¢,, as shown in Table 5(a).

Cost function versus iteration number for resource allocation with 4 guns
and 4 targets. 6 = 0.02, p = 0.8, 0,;&x = +0.1 in (a), 0,56 = —0.1 in (b)

and ¢,; as shown in Table 5(a).
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Fig. 11 A plot of CPU time for 1000 iterations versus number of parameters.

Fig. 12 Cost function versus iteration number for resource allocation with 2 guns
and 3 targets. Efficiencies are given in Table 3(a). o,;x = 0.0. (a) Alopex
with § = 0.015, p = 0.78. (b) SA with L = 50, § = 0.5 and § = 0.015.

Fig. 13 Cost function versus iteration number for resource allocation with 4 guns
and 4 targets. Efficiencies are given in Table 6. o,;x = 0.0. (a) Alopex
with § = 0.015, p = 0.75. (b) SA with L = 100, 8 = 0.5 and é = 0.015.
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Table 1

Trial 1 2 3 4 5 6 Trial 1 2 3 4 5 6
Finin 128 80 127 79 9 24 Foin 38 40 85 38 66 24
Templ. 3 1 3 1 2 2 Templ. 2 2 5 2 4 2
Iter. 472 350 449 298 424 681 Iter. 382 370 483 234 589 504

(1) Input template 2, a = 80°, § = 266°, v = 55°. (2) Input template 2, a = 38°, § = 165°, v = 23°.

Trial 1 2 3 4 5 6 Trial 1 2 3 4 5 6
Fuiw 13 10 102 102 260 264 Fain 107 13 112 62 13 120
Templ. 2 2 3 3 2 1 Templ. 5 2 5 1 2 5
Iter. 491 468 351 502 665 553 Iter. 123 355 253 574 672 333

{3) Input template 2, a = 133°, § = 210°, v = 75°. (4) Input template 2, a = 311°, § = 322°, v = 162°.

Table 2
Trial 1 2 3 4 5 6 Trial 1 2 3 4 5 6
Funin 222 138 12 16 165 321 Fiin 21 68 69 68 69 11
Templ. 1 5 4 4 5 4 Templ. 4 5 5 5 4 4
Iter. 659 441 594 170 629 659 Iter. 635 258 584 246 491 241
(1) Input template 4, o = 80°, f = 266°, v = 55°. (2} Input template 4, o = 311°, § = 322°, v = 162°.
Trial 1 2 3 4 5 6 Trial 1 2 3 | 4 5 6
Fruin 27 70 76 12 19 19 Fiuin 262 13 7 271 9 288
Templ. 4 2 2 4 4 4 Templ. 1 4 4 2 4 5
[ter. 535 343 504 137 498 632 Iter. 601 169 285 264 549 669

(3) Input template 4, o = 38°, § = 165°, v = 23°. (4) Input template 4, a = 256°, § = 70°, v = 130°.
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Table

Table 4

Target 1 2 3
G 0.70 095 0.83
u
n 090 065 0.90
(a): Efficiencies
Target 1 2 3 4
1 0.70 095 08 091
G
2 0.90 075 099 087
u
3 095 0fs O0R0 088
n
4 0.80 08 060 099
(2): Efficiencies
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Target 1 2 3
G |1 000 066 034
l:l 2 072 000 028
Prob.
of hit 065 063 046
(b): Assignments
Target 1 2 3 4
1 000 094 004 0.01
° 2 006 000 092 002
’ 3 08 008 000 005
: 4 0.1t 002 001 085
Prob.
of hit 0.82 082 080 095
(b): Assignments




Table §

Target 1 2 3 4
Target 1 2 3 4 1 002 015 070 096
1 09 095 075 095 ° 2 097 000 002 0.00
¢ 2 090 08 095 070 ’ 3 002 096 000 0.01
’ 3 090 08 070 0.60 ’ 4 000 000 099 0.00
: 4 090 08 095 080 Prob.
of hit 082 08 087 081
(a): Efficiencies (b): Assignments
Table 6
Target 1 2 3 4
065 085 070 090
¢ 2| 080 080 050 085
’ 070 060 080 0.80
" 4|1 070 090 090 080

Efficiencies
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MISSION
of

Rome Awr Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technical and
engineering support within areas of competence s prowvided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*®I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.




